
ENTANGLEMENT DEGRADATION IN THE PRESENCE

OF (4þ n)-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

DAEKIL PARK

Department of Physics, Kyungnam University,

Changwon 631-701, Korea

Department of Electronic Engineering,
Kyungnam University, Changwon 631-701, Korea

dkpark@kyungnam.ac.kr

dkpark@hep.kyungnam.ac.kr

Received 31 October 2012

Revised 16 January 2013

Accepted 4 March 2013
Published 16 April 2013

In this paper, we compute the various bipartite quantum correlations in the presence of the

ð4þ nÞ-dimensional Schwarzschild black hole. In particular, we focus on the n-dependence of
various bosonic bipartite entanglements. For the case between Alice and Rob, where the former

is free falling observer and the latter is at the near-horizon region, the quantum correlation is

degraded compared to the case in the absence of the black hole. The degradation rate increases

with decreasing n. We also compute the physically inaccessible correlations. It is found that
there is no creation of quantum correlation between Alice and AntiRob. For the case between

Rob and AntiRob the quantum entanglement is created although they are separated in the

causally disconnected regions. It is found that contrary to the physically accessible correlation

the entanglement between Rob and AntiRob decreases with increasing n.

Keywords: Entanglement degradation; higher-dimensional black hole.

1. Introduction

It is evident that quantum information processes such as quantum teleportation,1

quantum cryptography,2�4 and quantum computer5,6 will play crucial role in the

future technology. In this reason, much attention is paid, recently, to the quantum

entanglement7 because it is regarded as a genuine physical resource for the quantum

information processing.

Although research into the quantum entanglement has a long history,8,9 the study

of its properties in the relativistic setting was initiated recently.10�28 The main issue

in this subject is to understand how a given entanglement is changed in the inertial

(see Refs. 13�16 and noninertial (see Refs. 17�28) frames. In the noninertial frame,
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degradation of the entanglement occurs, which is related to the well-known Unruh

e®ect.29,30 More recently, moreover, the change of the entanglement in the black hole

background was also examined.31�33

On the other hand, braneworld scenario,34�37 one of the modern cosmology,

assumes that our 4d space�time universe is embedded in higher-dimensional world.

In this reason, the absorption and emission properties of the higher-dimensional black

holes were investigated few years ago.38�42

The purpose of this paper is to examine the degradation of the bipartite entan-

glement in the presence of the ð4þ nÞ-dimensional Schwarzschild black hole. In order

to explore the degradation we assume that Alice and Rob share the maximally

entangled state initially. After sharing, Rob moves to the near-horizon region

while Alice is free falling into the black hole. In this situation, we will compute the

entanglement by adopting the negativity43 as an entanglement measure. Our main

focus in this paper is to investigate the e®ect of the extra dimensions n in the

entanglement degradation. Of course, the result of Ref. 32 is reproduced when n ¼ 0.

The paper is organized as follows. In Sec. 2, we review the space�time geometry

of the ð4þ nÞ-dimensional Schwarzschild black hole. For later convenience, we com-

pare the ð4þ nÞ-dimensional Schwarzschild space�time with the Rindler space�time

in this section. This comparison enables us to transform our problem into the degra-

dation of entanglement in the noninertial frame, which was studied in Refs. 17�28. In

Sec. 3, we discuss on the n-dependence of the entanglement. The correlation between

Alice and Rob is generally degraded in the presence of the black hole. It is found that

the degradation becomes weaker and weaker with increasing n. For the case between

Rob and AntiRob, the quantum correlation, contrary to the physically accessible

correlation, decreases with increasing n. In Sec. 4, a brief conclusion is given. In

Appendix A, explicit computation of negativity is performed.

2. Space{{Time Geometry

The higher-dimensional black hole solutions of the Einstein ¯eld equation were

discussed in detail in Ref. 44. The explicit expression of the ð4þ nÞ-dimensional

Schwarzschild black hole solution in terms of the usual Schwarzschild coordinates is

in the following:

ds2 ¼ �hðrÞdt2 þ h�1ðrÞdr2 þ r2d�2
nþ2; ð1Þ

where

hðrÞ ¼ 1� rH
r

� �
nþ1

;

d� 2
nþ2 ¼ d� 2nþ1 þ sin2�nþ1ðd� 2n þ sin2�nð� � � þ sin2�2ðd�21 þ sin2�1d�

2Þ � � � ÞÞ:
ð2Þ

The horizon radius rH is related to the black hole mass M as following:

rnþ1
H ¼ 8� nþ3

2

� �
ðnþ 2Þ� nþ1

2

M

Mnþ2
�

; ð3Þ
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where M� ¼ G�1=ðnþ2Þ is a ð4þ nÞ-dimensional Planck mass and G is a Newton

constant.

Because of the symmetry of the problem we restrict our attention to the temporal

and radial coordinates. Thus, the part of the metric we will analyze is

d‘2 ¼ �hðrÞdt2 þ h�1ðrÞdr2: ð4Þ
We can write the line-element d‘2 in terms of the proper time � of an observer located

in r ¼ r0 as follows:

d‘2 ¼ � hðrÞ
h0

d� 2 þ h�1ðrÞdr2; ð5Þ

where h0 � hðr0Þ and d� ¼ ffiffiffiffiffi
h0

p
dt.

Now, we de¯ne a new spatial coordinate z as follows:

z2 ¼ 4r1�n
H

ð1þ nÞ2 ðr
1þn � r 1þn

H Þ; ð6Þ

Then, the pro¯le function hðrÞ can be written as

hðrÞ ¼ ð�zÞ2
1þ ð�zÞ2 ; ð7Þ

where � is a surface gravity de¯ned by

� � 1

2
h 0ðrHÞ ¼

1þ n

2rH
: ð8Þ

In terms of z it is easy to show that the line-element d‘2 becomes

d‘2 ¼ � 1

h0

ð�zÞ2
1þ ð�zÞ2 d�

2 þ ½1þ ð�zÞ2�ð1�nÞ=ð1þnÞdz2: ð9Þ

In the near-horizon region, i.e. r � rH , Eq. (9) reduces to

d‘2 � � �zffiffiffiffiffi
h0

p
� �

2

d� 2 þ dz2: ð10Þ

This is just the metric of the Rindler space with the acceleration parameter �=
ffiffiffiffiffi
h0

p
.

In order to discuss on the physical states, we de¯ne the Kruskal coordinates

�u ¼ ���1e��ðt�r�Þ; �v ¼ ��1e�ðtþr�Þ; ð11Þ
where the \tortoise" coordinate r� is de¯ned by

dr�
dr

¼ h�1ðrÞ: ð12Þ

In terms of the Kruskal coordinates the line-element d‘2 becomes

d‘2 ¼ �hðrÞe�2�r�d�ud�v: ð13Þ
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Since r� reduces to

r� � rH þ rH
nþ 1

ln
r

rH
� 1

����
����

at the near-horizon region, we can re-express d‘2 in this region as

d‘2 � �ðnþ 1Þe�ðnþ1Þd�ud�v �u�v ¼ � z2

nþ 1
:

As authors in Ref. 32 suggested, there are three regions in this background, in which

we can de¯ne the di®erent time-like Killing vectors. Thus, one should de¯ne the

physical vacuum in each region. First vacuum is known as the Hartle�Hawking

vacuum j0iH . This is de¯ned by the time-like Killing vector which is proportional to

@ �u þ @�v . Second and third vacua are the Boulware vacuum45j0iB and anti-Boulware

vacuum j0i�B , which are de¯ned by the time-like Killing vectors @t and �@t,
respectively.

Since the metric (10) reduces to the Rindler space metric with the acceleration

�=
ffiffiffiffiffi
h0

p
in the near-horizon region, one can derive the interrelations between these

vacua using the Unruh e®ect.29,30 The relations beyond the single-mode approxi-

mation were derived in Ref. 46. Corresponding j0iH to Minkowski vacuum and, j0iB
and j0i�B to the vacua in the left- and right-wedges of Rindler space, one can derive

the following relations:

j0�iH ¼ 1

cosh r

X1
n¼0

tanhnrjn�iBjn�i�B ;

j1�iH ¼ 1

cosh2r

X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
tanhnr½qLjn�iBjðnþ 1Þ�i�B þ qRjðnþ 1Þ�iBjn�i�B �;

ð14Þ
where jqLj2 þ jqRj2 ¼ 1 and

tanh r ¼ exp � �
ffiffiffiffiffi
h0

p
�

�

� �
: ð15Þ

In Eq. (14), jm�iF means m-particle states of energy �, which is constructed by

operating the creation operator m times to the vacuum j0iF with F ¼ fH;B; �Bg.
In the next section, we will use Eq. (14) to analyze the bosonic entanglement deg-

radation in the presence of the black hole (1).

3. Entanglement Degradation

Let us consider a situation that Alice and Rob initially share the maximally entan-

gled state

j iAR ¼ 1ffiffiffi
2

p ðj00iH þ j11iHÞAR ð16Þ
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when both are free falling into the black hole. Since @ �u þ @�v is proportional to the

time-like Killing vector for the free falling observer, Eq. (16) is understood to be

written as a Hartle�Hawking basis. For simplicity, the energy parameters �A and �R

for Alice and Rob are ignored in Eq. (16).

Now, we assume that after sharing j iAR, Rob moves to the near-horizon region,

i.e. r ¼ r0 � rH . Thus, we restrict ourselves into

1 < RS � r0
rH

< 1:05 ð17Þ

throughout this paper. Therefore, Eq. (15) implies

tanh r ¼ exp � �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

Rnþ1
s

s !
; ð18Þ

where � � 2��R=�. In this assumption, Eq. (14) implies that j iAR is changed into

j iAR �R ¼ 1ffiffiffi
2

p
X1
n¼0

tanhnr

cosh2r
½cosh rj0;n;ni þ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

qLj1;n;nþ 1i

þ ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
qRj1;nþ 1;ni�: ð19Þ

In this paper, our main interest is to examine the e®ect of the extra dimension n in

the entanglement degradation. Thus, we will choose qR ¼ 1 for simplicity. Further-

more, as shown in Ref. 17, Eq. (14) with qR ¼ 1 case corresponds to the Unruh

transformation within the single-mode approximation.

3.1. Alice�Rob quantum correlations

Now, let us discuss on the entanglement between Alice and Rob. In order to examine

the entanglement in the presence of the ð4þ nÞ-dimensional black hole, we should

compute the bipartite entanglement of a quantum state �AR, where the subscript AR

stands for Alice and Rob. Although there are a lot of entanglement measures which

quantify the bipartite entanglement such as entanglement of formation,47 concur-

rence,48 and relative entropy of entanglement,49 most of them are very hard to

compute mainly due to that fact that �AR is a state in qudit system. Therefore, we

choose a negativity43 in this paper for tractable computation. The negativity N AR of

�AR is de¯ned as

N AR ¼ 1

2

X
i

ðj�ij � �iÞ ¼ �
X
�i<0

�i; ð20Þ

where �i are the eigenvalues of �
TA

AR and TA is a partial transposition with respect to

the party A. It is worthwhile noting that the negativity N AR in the absence of the

black hole is 1=2.

The computation of N AR is described in Appendix A. In Fig. 1, we plot N AR

with varying the number of extra dimensions as n ¼ 0; 1; 2; 3; 100. In Fig. 1(a), we
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plot the RS-dependence of N AR with choosing � ¼ 10. As this ¯gure exhibits, N AR

is less than 0:5, so that as expected, the degradation of the entanglement occurs.

The rate of the degradation decreases with increasing RS , which means that Rob

goes away from the black hole. When Rob approaches to the horizon, i.e. r0 ! rH ,

(a)

(b)

Fig. 1. (Color online) In (a) we plot the RS-dependence of N AR when n ¼ 0; 1; 2; 3; 100. We ¯x � as

� ¼ 10. In (b) we plot the �-dependence of N AR when n ¼ 0; 1; 2; 3; 100. We ¯x RS as RS ¼ 1:03.
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all bipartite entanglement vanishes. Another remarkable fact this ¯gure shows is that

the degradation becomes weaker with increasing n. This fact can be explained as

follows. In ð4þ nÞ dimension, the Newtonian gravitational force is proportional to

1=rnþ2. Therefore, it goes weaker and weaker with increasing n. Thus, the e®ective

acceleration Rob needs to remain outside the black hole becomes smaller with

increasing n. It causes the weaker degradation of the entanglement between Alice

and Rob. In Fig. 1(b), we plot the �-dependence of N AR with choosing RS ¼ 1:03.

This ¯gure also shows that the degradation becomes weaker with increasing n.

The reason for this fact can be explained the same way.

3.2. Alice�AntiRob quantum correlations

The computation of negativity between Alice and AntiRob is given in Appendix A.

It is shown that no entanglement is created between these parties when qR ¼ 1, which

corresponds to the Unruh transformation within the single-mode approximation.

3.3. Rob�AntiRob quantum correlations

In Appendix A, the negativity N R �R is computed. In Fig. 2, we plot N R �R with

varying the number of extra dimensions as n ¼ 0; 1; 2; 3; 10. In Fig. 2(a), we plot

the RS-dependence of N R �R with choosing � ¼ 10. In Fig. 2(b), we also plot

(a)

Fig. 2. (Color online) In (a) we plot the RS-dependence of N R�R when n ¼ 0; 1; 2; 3; 10. We ¯x � as

� ¼ 10. In (b) we plot the �-dependence of N R�R when n ¼ 0; 1; 2; 3; 10. We ¯x RS as RS ¼ 1:03.
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the �-dependence of N R �R with choosing RS ¼ 1:03. Contrary to the quantum

correlation between Alice and Rob, the quantum entanglement between Rob

and AntiRob decreases with increasing n. We do not know why n-dependence

of N R �R is di®erent from that of N AR. Probably, this is due to the fact that this

entanglement is unphysical because Rob is causally disconnected from AntiRob.

Thus, this quantum correlation is purely theoretical and is useless for the quantum

information task.

4. Conclusion

In this short paper, we compute the various bipartite quantum correlations in

the presence of the ð4þ nÞ-dimensional Schwarzschild black hole. In particular,

we focus on the n-dependence of the bosonic entanglements. For the case between

Alice and Rob the quantum correlation is degraded as expected. The degradation

rate increases with decreasing n. However, it is found that there is no creation of

quantum correlation between Alice and AntiRob, For the case between Rob and

AntiRob, the quantum entanglement is created although they are separated in

the causally disconnected regions. The entanglement is found to decrease with

decreasing n.

In this paper, we performed the calculation under the condition of r0 � rH .

If we relax this condition, various correlations may exhibit di®erent behavior. In this

(b)

Fig. 2. (Continued)
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case, however, we cannot use the Rindler-anology of the Schwarzschild background.

Thus we have to re-derive the equations corresponding to Eq. (14) in this case by

computing appropriate Bogoliubov coe±cients. However, this generalization might

be a di±cult problem mainly due to the di±culty in the analytic computation of the

Bogoliubov coe±cients.

It seems to be of interest to extend this paper to the higher-dimensional rota-

ting black hole case.41,42 The condition for occurring the superradiance in the

higher-dimensional rotating black holes was derived in Refs. 50 and 51. It seems to be

highly interesting to examine the e®ect of the superradiance to the entanglement

degradation.
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Appendix A

In this appendix we compute the various bipartite entanglement.

A.1. Alice�Rob quantum correlations

Now, we assume that Rob is in the region where Killing vector is @t. Since, then,

Rob cannot access the region whose time-like Killing vector is �@t, one should take a

partial trace over �R in Eq. (19). Thus, the resulting quantum state for Alice�Rob

system becomes a mixed state in a form

�AR ¼ Tr �R j iAR �Rh j

¼ 1

2

X1
n¼0

tanh2nr

cosh4r
½cosh2rj0;nih0;nj

þ ðnþ 1ÞfjqLj2j1;nih1;nj þ jqRj2j1;nþ 1ih1;nþ 1jg
þ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

cosh rfqRj1;nþ 1ih0;nj þ q�Rj0;nih1;nþ 1jg
þ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

sinh rfqLj1;nih0;nþ 1j þ q�Lj0;nþ 1ih1;njg
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
tanh rfqLq�Rj1;nih1;nþ 2j

þ q�LqRj1;nþ 2ih1;njg�: ðA:1Þ

For qR ¼ 1, computation of N AR is straightforward from Eq. (A.1). Since �TA

AR

can be diagonal in terms of 2� 2 matrix if one chooses the order of the basis

appropriately, the eigenvalues can be easily computed, which is

1

2 cosh2r
;�	

k ðk ¼ 0; 1; 2; . . .Þ
	 


;
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where

�	
k ¼ tanh2k�2r

4 cosh4r
½ðkþ cosh2r tanh4rÞ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ cosh2r tanh4rÞ2 þ 4 cosh2r tanh4r

q
�: ðA:2Þ

Since �þ
k > 0 and ��

k < 0, the negativity between Alice and Rob becomes

N AR ¼ �
X1
k¼0

��
k : ðA:3Þ

The extra-dimensional dependence of N AR arises from n-dependence of r as Eq. (18)

shows.

A.2. Alice�AntiRob quantum correlations

From Eq. (19) with qR ¼ 1 the state for Alice�AntiRob becomes

�A �R ¼ TrRj iAR �Rh j

¼ 1

2

X1
n¼0

tanh2nr

cosh4r
½cosh2rj0;nih0;nj þ ðnþ 1Þj1;nih1;nj

þ ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
sinh rfj0;nþ 1ih1;nj þ j1;nih0;nþ 1jg�: ðA:4Þ

Since, by similar way, one can show that all eigenvalues of �TA

A �R
are positive, we get

N A �R ¼ 0. Thus, no entanglement is created between Alice and AntiRob.

A.3. Rob�AntiRob quantum correlations

From Eq. (19) with qR ¼ 1 the state for Rob�AntiRob becomes

�R �R ¼ TrAj iAR �Rh j

¼ 1

2

X1
m;n¼0

tanhmþnr

cosh4r
½cosh2rjn;nihm;mj

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þðnþ 1Þ

p
jnþ 1;nihmþ 1;mj�: ðA:5Þ

Since �TB

R �R
is block-diagonal in terms of m�m (m ¼ 1; 2; 3; . . .Þ matrix provided that

the order of the basis is selected as

fj00i; j01i; j10i; j02i; j11i; j20i; . . .g;

one can compute the eigenvalues in principle. Therefore, it is possible to compute

N R �R numerically by making use of Eq. (20).
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