

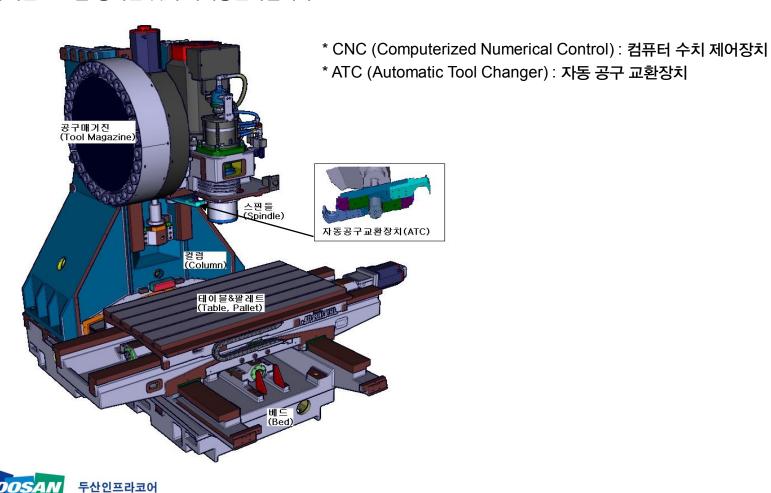
머시닝센터 프로그래밍

- Vision 380M
- Vision 380i

2010년 12월 31일 공기BG Product Support

목차

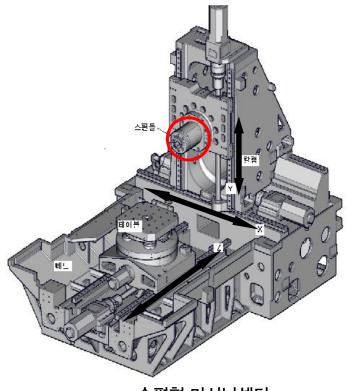
- 1. 머시닝센터(Machining Center)
 - 1.1 머시닝센터 정의
 - 1.2 머시닝센터 종류
- 2. 프로그램 기초
 - 2.1 Address 일람표
 - 2.2 프로그램 명
 - 2.3 수치입력방식과 좌표계
- 3. G코드
 - 3.1 G코드 종류
 - 3.2 G코드 List
- 4. M코드
 - 4.1 M코드 List
- 5. 기본 G코드
 - 5.1 좌표계 및 지령방식
 - 5.2 위치결정 G00
 - 5.3 직선보간 G01
 - 5.4 원호보간 G02/G03
 - 5.5 헬리컬 보간
 - 5.6 임의의 면취, 코너 R
 - 5.7 휴지 G04
 - 5.8 기계원점자동복귀 G28
 - 5.9 제2원점자동복귀 G21
- 6. Work좌표계
 - 6.1 치구옵셋 G57
 - 6.2 치구옵셋 G54~G56


- 7. 공구경 보정
 - 7.1 공구경 보정 G40~G42
 - 7.2 공구경 보정
 - 7.3 공구경 보정 예제 프로그램
- 8. 공구 길이 보정
 - 8.1 공구 길이 보정 G43/G44
 - 8.2 공구 길이 보정
 - 8.3 공구 길이 보정 방법
 - 8.4 공구 보정 G58/G59
- 9. 고정 사이클
 - 9.1 드릴링 사이클 G81
 - 9.2 카운터 보링 사이클 G82
 - 9.3 펙 드릴링 사이클 G83
 - 9.4 스텝, 펙 사이클 G77
 - 9.5 가변 펙 사이클 G78
 - 9.6 태핑 사이클 G84
 - 9.7 보링 사이클 G85
 - 9.8 보링 사이클 G86
 - 9.9 정밀 보링 사이클 G88
 - 9.10 백 보링 사이클 G79
- 10. 서브프로그램
 - 10.1 서브프로그램 호출/ 종료
 - 10.2 로컬좌표계 G93
- 11.기타보간

1. 머시닝센터 (Machining Center)

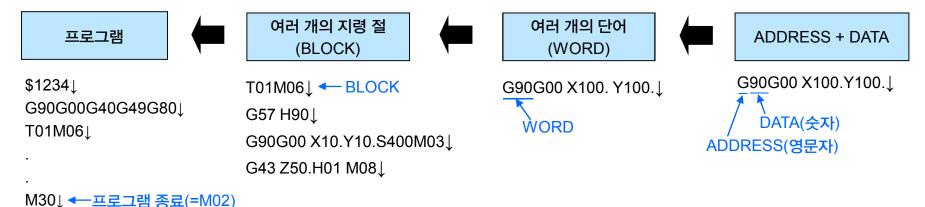
1.1 머시닝센터 정의

공구를 회전시켜 소재를 가공하는 기계로 범용 밀링에 CNC를 장착한 기계를 CNC밀링이라 하고, CNC밀링에 자동공구교환 장치인 ATC를 장착한 것이 머시닝센터입니다.


1. 머시닝센터 (Machining Center)

1.2 머시닝센터의 종류

머시닝센터는 스핀들의 방향에 따라 크게 두 가지 종류로 구분됩니다. 수직형(Vertical) 머시닝센터: 스핀들이 수직방향으로 설치되어있는 머시닝센터 수평형(Horizontal) 머시닝센터: 스핀들이 수평방향으로 설치되어있는 머시닝센터



수평형 머시닝센터

2.프로그램 기초

2.1 프로그램 구성

ADDRESS: 프로그램에서 사용하는 A~Z까지의 영문자

DATA: ADDRESS 뒤에 붙는 0~9까지의 숫자 WORD: ADDRESS + DATA로 만든 한 단어

BLOCK: 하나 또는 여러 개의 워드(WORD)를 묶어 블록이라 하며 블록의 끝에는 EOB(End Of Block)가 붙음.

PROGRAM(프로그램): 프로그램 명으로 시작해서 프로그램 종료를 나타내는 코드 M02, M30으로 끝남.

* E.O.B (End Of Block): EOB는 컨트롤러마다 다르므로 확인하여 붙입니다.

	Vision 380
표시 형식	↓
입력 키	YES

2.프로그램 기초

1) Address 일람

영문자 한 자리수로 지령되며 뒤에 오는 Data(프로그램의 숫자)의 의미를 규정합니다.

기 능	ADDRESS	의미
Program 이름(번호)	\$ (V380)	프로그램의 이름
Sequence 번호	N	시퀀스 번호(블록의 이름)
준비기능	G	동작 지령(직선, 원호 등)
Dimension Word(좌표어)	X, Y, Z	절대/증분 좌표 이동 시 지령
	A, B, C	X, Y, Z의 회전축 좌표
	I, J, K / R	원호의 중심좌표, 반경
이송기능	F	분당 이송[mm/min]
스핀들기능	S	스핀들 회전 수[rev/min]
공구기능	Т	공구번호
보조기능	M	기계 측의 ON/OFF 제어
옵셋번호	D, H	공구경, 공구 길이 옵셋 번호

2.프로그램 기초

2.2 프로그램 명

1) Vision 380M

\$ 뒤에 최대 8자리수의 영문자,숫자 또는 -를 사용하여 지정합니다

ex) \$SAMPLE (O)

\$SAMPLE-1 (O)

\$123 (O)

\$P.J.E (X)

\$SAM,1 (X)

\$DOO SAN (X) (마침표'.'나 쉼표',' 또는 스페이스를 사용할 수 없음)

※ 주의사항

- 프로그램번호 \$9******(9로 시작하는 8자리 프로그램 명)은 기계메이커에서 사용하기 때문에 사용자가 사용할 수 없도록 되어있습니다.
- 프로그램 명에 0을 붙이면 다른 프로그램을 의미하므로 \$1과 \$01은 다른 프로그램입니다. 참고적으로 Fanuc은 O1과 O01은 동일 프로그램으로 인식합니다.

2. 프로그램 기초

2.3 수치입력 방식

프로그램에서 수치를 입력할 때에는 두 가지 방법으로 입력할 수 있습니다.

1)전탁형

소수점을 입력하지 않아도 mm로 인식(기본단위:1)

 $X1 \rightarrow 1mm (1inch)$

X10 \rightarrow 10mm (10inch)

2)최소 입력 단위형

소수점을 입력하지 않으면 1/1000mm로 인식(기본단위:1/1000)

X1 \rightarrow 0.001mm (0.001inch)

 $X10 \rightarrow 0.01$ mm (0.01inch)

 $X1000 \rightarrow 1$ mm (1inch)

 $X1. \rightarrow 1mm$ (1inch)

프로그램 지령	전탁형 수치	최소 입력 단위형 수치
X1000	1000mm	1mm
X1000.	1000mm	1000mm

2. 프로그램 기초

2.4 좌표계

1) 기계좌표계

파라메타에 설정된 기계원점을 기준으로 하는 좌표계입니다. 장비를 처음 켰을 때 자기 위치를 인식하지 못하기 때문에 수동으로 기계원점 복귀하여 CNC가 위치를 파악하도록 합니다.

2) Work(공작물)좌표계

사용자가 셋팅한 프로그램 원점을 기준으로 하는 좌표계입니다. 쉽게 프로그래밍하기 위해 Work상에 편리한 점을 설정하여 프로그램 원점으로 사용합니다.

3) Local(로컬)좌표계

필요에 의해 프로그램 원점을 이동하고 싶을 때 사용합니다. 지령 이후 모든 좌표는 로컬좌표계를 기준으로 움직입니다. (로컬좌표계 지령으로 Work좌표계나 기계좌표계는 바뀌지 않음)

3.1 G코드 종류

G코드는 준비기능코드로 사용하며 두 가지로 구분할 수 있습니다.

원샷 G코드(One Shot): 지령한 블록에 한하여 유효함 _ 일회성

모달 G코드(Modal) : 동일그룹의 다른 G코드가 나오기 전까지 계속 유효함 _ 연속성

예를 들면 그룹번호가 같은 G00, G01의 경우 G01 X100.

Y100. ★ G코드가 지령되지 않은 2블록에서 계속 G01기능 유효 X0.

G00 Y0.

동일그룹의 다른 G코드인 G00이 지령되어 G00 모달

※주의사항

- △ 그룹은 원샷 G코드입니다.
- ▶은 초기에 설정되어 있는 G코드 입니다.

3.2 G코드 List

코드	그룹	기능	코드	그룹	기능	코드	그룹	기능
▶G00		위치 결정, 급속이송	G22	^	진원 절삭 川 CW	▶G44	07	공구 길이 보정 취소
G01	01	직선보간(절삭이송)	G23	Δ	진원 절삭 Ⅱ CCW	G45		공구 위치 옵셋(1/2 신장)
G02	01	원호 보간 CW, 헬리컬 보간 CW	G24	21	축 간섭 체크 ㅣ ON	G46		공구 위치 옵셋(1/2 축소)
G03		원호 보간 CCW, 헬리컬 보간 CCW	▶G25	21	축 간섭 체크 ㅣ OFF	G47		공구 위치 옵셋
G04	Δ	휴지(Dwell)	▶G26	22	축 간섭 체크 II ON	G48		공구 위치 옵셋
G05		매 회전 휴지	G27	22	축 간섭 체크 II OFF	G49	07	공구 길이 보정 취소
G06	01	포물선 보간	G28	Δ	자동 기계 원점 복귀	G50	08	자동가감속
G07	Δ	가상축 보간	G29	Δ	원점으로부터의 자동복귀	▶G51	06	자동가감속 취소
G08	_	자동 가속	▶G30	04	3차원 공구 보정 취소	G52	Δ	CSS최대 회전수 설정
G09		자동 감속	G31	04	3차원 공구 보정	▶G53		치구 옵셋 취소
▶G10	02	좌표변환 취소	G33	01	나사절삭	▶G54]	치구 옵셋 Ⅱ (N601~N612)
G11	02	좌표변환	▶G35		평면 변환 취소	G55	09	치구 옵셋 Ⅱ (N621~N632)
G12	_	진원 절삭 ㅣ CW	G36		평면 변환(X, Y, Z \rightarrow X, Z, -Y)	G56		치구 옵셋 Ⅱ (N641~N652)
G13	Δ	진원 절삭 ㅣ CCW	G37	01	평면 변환(X, Y, Z \rightarrow Y, Z, X)	G57		치구 옵셋
G14	02	3차원 좌표 변환	G38		평면 변환(X, Y, Z → -X, Z, Y)	G58		프로그램어블 데이터 입력(절대
▶G17		XpYp 평면 선택	G39		평면 변환(X, Y, Z \rightarrow Y, Z, -X)		Δ	치), 프로그램 파라메타 입력
G18	03	ZpXp 평면 선택	▶G40		공구경 보정 취소	G59		프로그램어블 데이터 입력(증분 치), 프로그램 파라메타 입력
G19		YpZp 평면 선택	G41	06	왼쪽 공구경 보정	G60	Δ	한 방향 위치결정
G20	Δ	원점복귀 체크	G42		오른쪽 공구경 보정	G61	Δ	스킵기능
G21		제2, 제3, 제4 원점 복귀	G43	07	공구 길이 보정	G62	Δ	프로그램 미러이미지

3.2 G코드 List

코드	그룹	기능	코드	그룹	기능	코드	그룹	기능
G63	Δ	탭 범위 선택	G83		펙 드릴링 사이클(Peck Drilling Cycle)	G109		지그재그 격자 드릴링 패턴
▶G64	10	스케일링 취소	G84		태핑 사이클(Tapping Cycle)	G110		지그재그 격자 드릴링 패턴
G65	10	스케일링	G85		보링 사이클(Boring Cycle(Reamer))	G111		직선 등간격 드릴링 패턴
G66	Δ	프로그램 미러이미지	G86	Δ	보링 사이클(Boring Cycle)	G112		부등간 직선 등간격 드릴링 패
G67		원통 보간	G87		스텝 사이클(Step Cycle)	0.440	 	턴
G70		인치 지령	G88		정밀 보링 사이클(Fine Boring Cycle)	G113	Δ	격자 드릴링 패턴
▶G71	00	매트릭 지령	G89		보링 사이클(Boring Cycle)	G114		격자 드릴링 패턴
G72		서브프로그램 호출	▶G90		절대(Absolute) 지령	G115		원호 드릴링 패턴
G73	Δ	 기계좌표계 위치지령	G91	12	증분(Incremental) 지령	G116	ļ	부등간 아크 드릴링 패턴
G74		서브프로그램(매크로) 모달호출 ㅣ	G92		Work좌표계 설정	G117		볼트홀 서클 드릴링 패턴
G75	15	서브프로그램(매크로) 모달호출 II	G93	Δ	 로컬(Local)좌표계 설정	G118		사각 드릴링 패턴
▶G76		서브프로그램(매크로) 취소	▶G94		분당이송	G119		사각 드릴링 패턴
		고속 펙 드릴링 사이클(Step & Peck	G95	13	회전당 이송	G121		페이스 밀링 1 패턴
G77		Drilling Cycle)	G96		주속 일정 제어	G122		페이스 밀링 1 패턴
G78		가변 펙 드릴링 사이클	▶G97	23	주속 일정 제어 취소	G123		페이스 밀링 2 패턴
G79		백 보링 사이클(Back Boring Cycle)	▶G98		고정사이클 초기점 복귀	G124		페이스 밀링 2 패턴
▶G80	Δ	고정 사이클 취소		14		G125		포켓 밀링 패턴
G81		드릴링 사이클(Drilling Cycle, Spot	G99		고정사이클 R점(Reference) 복귀	G126		포켓 밀링 패턴
G01		Boring Cycle)	G100	Δ	│ 고정 사이클, 구멍가공 사이클의 구멍 │ 가공 무시	G127		라운드 밀링 패턴
G82		카운터 보링 사이클(Drill Cycle, Counter Boring Cycle)	G105	Δ	인볼류트 보간	G128		라운드 밀링 패턴

3.2 G코드 List

코드	그룹	기능	코드	그룹	기능
G129		내주 라운드 밀링 패턴	▶G980	27	패턴 기준점 복귀 모드
G130	Δ	내주 라운드 밀링 패턴	G981	21	패턴 최종점 복귀 모드
G131	Δ	포켓 밀링(격자형) 패턴	G984	29	Shape ON
G132		포켓 밀링(격자형) 패턴	▶G985	29	Shape OFF
G143	07	공구축 방향 공구 길이 보정	G986	26	다중 버퍼 모드 ON
▶G149	07	공구축 방향 공구 길이 보정 취소	▶G987	20	다중 버퍼 모드 OFF
G186	11	다단 보링 사이클	▶G990	16	싱글 블록 정지의 억제 취소
G190		절삭 개시 검지	G991	10	싱글 블록 정지의 억제
G222	Δ	진외원 절삭 CW	▶G992	17	Feed Hold 억제 취소
G223		진외원 절삭 CCW	G993	17	Feed Hold 억제
G571	25	기계 정보 수정 ON	▶G994	18	오버라이드(Override) 유효
▶G581	25	기계 정보 수정 OFF	G995	10	오버라이드무효
G721	^	회전 복사	▶G996	10	핸들 개입 허가
G722	Δ	평행 복사	G997	19	핸들 개입 금지
G811	11	쵸핑 모드 ON	▶G998	20	공구 절손, 정부하 판정
G972		개입형 매크로(타입 ㅣ) 유효	G999	20	공구 절손, 정부하 판정 바이패스
▶G973	28	개입형 매크로 무효			
G974		개입형 매크로(타입 Ⅱ) 유효			
G978	^	공구 마모 계수 설정			

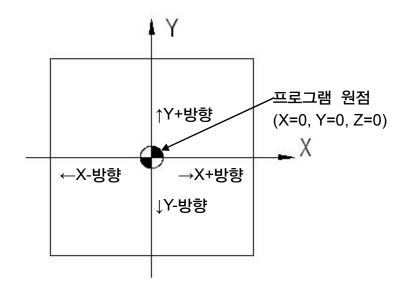
공구 마모 계수 취소

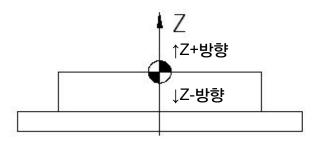
G979

4. M코드

4.1 M코드 List

코드	기능	코드	기능	코드	기능
M00	프로그램 정지	M19	스핀들 오리엔테이션	M48	Override(오버라이드) 100% Clamp
M01	선택 정지	M20	5축(Tilting) Clamp	M49	오버라이드 100% Clamp 취소
M02	프로그램 종료	M21	5축(Tilting)Uunclamp	M50	테이블 Locate, Splash Guard 2 Open
M03	스핀들 정회전(CW)	M22	ATC Door Open	M51	테이블 Unlocate, Splash Guard 2 Close
M04	스핀들 역회전(CCW)	M23	ATC Door Close	M52	자동 문(Splash Guard) Open
M05	스핀들 회전 정지	M24	Chip Conveyor 운전	M53	자동 문(Splash Guard) Close
M06	ATC(자동 공구 교환)	M25	Chip Conveyor 정지	M54	Part Count
M07	절삭유 2 ON(Through 스핀들)	M28	절삭유 Gun Motor 운전	M55	공구 매거진 위치 1
M08	절삭유 1 ON(Flood 절삭유)	M30	프로그램 종료 & 선두 블록 복귀	M56	공구 매거진 위치 1
M09	절삭유 1, 2 OFF	M31	ATC Changer Start Flag	M58	6축 Clamp/Fixture Clamp 4
M10	테이블(B축) Clamp	M32	대기포트 Up(Cam ATC) ATC 원점	M59	6축 Unclamp/Fixture Unclamp 4
M11	테이블(B축) Unclamp		(Armless ATC) 대기포트 Down(Cam ATC) ATC 교환 위	M60	APC(팔레트교환)
M12	절삭유 3 ON(Shower)	M33	대기포트 Down(Carria TC) ATC 교환 뒤 치(Armless ATC)	M61	팔레트 Loading & 팔레트 1 Load
M13	절삭유 4 ON(Intermittent)	M36	다음 공구 Index	M62	팔레트 Loading & 팔레트 2 Load
M14	절삭유 5 ON, Air Blow ON & Collet Air	M37	Changer Motor Brake 해제 ON	M65	2nd Interlock By Pass
	Blow ON	M38	Changer Motor Brake 해제 OFF	M66	ATC & APC 동시 교환
M15	절삭유 3, 4, 5 OFF, Air Blower OFF & Collet Air Blow OFF	M39	ATC 정비 모드 OFF	M68	스핀들 공구 Clamp
M16	Air Blow 2 ON(공구측정 Air)	M40	ATC 정비 모드 ON	M69	스핀들 공구 Unclamp
M17	Air Blow 1 ON	M41	ATC Change Arm 1 사이클	M70	팔레트 매거진 Index(Search)
M18	Air Blow 1, 2 OFF	M45	스핀들 공구 번호 Set	M71	팔레트 1 Unload


4. M코드


4.1 M코드 List

코드	기능	코드	기능
M72	팔레트 2 Unload	M92	외부 M코드 2
M73	Touch Probe Run	M93	외부 M코드 3
M74	Touch Probe Run	M94	외부 M코드 4
M75	Touch Probe OFF State	M94	외부 M코드 5
M76	Aux. Clamp 1(Fixture Clamp 1)	M843	리지드 태핑 모드(오른 Thread 태핑)
M77	Aux. Unclamp 1(Fixture Unclamp 1)	M844	리지드 태핑 모드(왼 Thread 태핑)
M78	팔레트 Clamp	M845	리지드 태핑 모드 취소
M79	팔레트 Unclamp	M80	미러이미지 취소
M80	미러이미지 취소	M81	X축 미러이미지
M81	X축 미러이미지	M82	Y축 미러이미지
M82	Y축 미러이미지	M83	4축 미러이미지
M83	4축 미러이미지	M84	Cutting Feed Possible During 스핀들 정
M84	Cutting Feed Possible During 스핀들 정지		지
M85	Cutting Feed Impossible During 스핀들 정 지	M85	Cutting Feed Impossible During 스핀들 정지
M86	Aux. Clamp 2(Fixture Clamp 2)	M86	Aux. Clamp 2(Fixture Clamp 2)
M87	Aux. Unclamp 2(Fixture Unclamp 2)	M87	Aux. Unclamp 2(Fixture Unclamp 2)
M88	Aux. Clamp 3(Fixture Clamp 3)	M88	Aux. Clamp 3(Fixture Clamp 3)
M89	Aux. Unclamp 3(Fixture Unclamp 3)		
M91	<u> </u>		

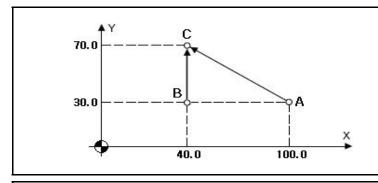
5.1 좌표계 및 지령방식

1) 절대방식 지령 (G90)

:프로그램원점을 기준으로 이동할 점의 X,Y,Z축 좌 표치 지령

2) 증분방식 지령 (G91)

:현재 공구위치를 기준으로 이동할 점의 X,Y,Z축 이 동량과 방향 지령

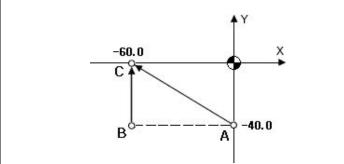


3) G90 절대(Absolute)지령과 G91 증분(Incremental)지령

■ G90 : 절대(Absolute)지령 프로그램 원점을 기준으로 이동할 점의 X, Y, Z축 좌표

■ G91 : 증분(Incremental)지령

현재 공구의 위치를 기준으로 이동할 점의 X, Y, Z축 거리와 방향



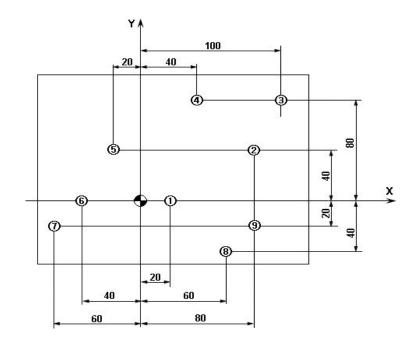
$A \rightarrow C$ 로 이동할 경우

절대지령 : G90 X40. Y70.↓ 증분지령 : G91 X-60. Y40.↓

$B \rightarrow C$ 로 이동할 경우

절대지령 : G90 X40. Y70.↓ 증분지령 : G91 X0 Y40.↓

$A \rightarrow C$ 로 이동할 경우


절대지령 : G90 X-60. Y0.↓ 증분지령 : G91 X-60. Y40.↓

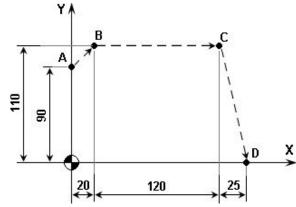
B → C로 이동할 경우

절대지령 : G90 X-60. Y0.↓ 증분지령 : G91 X0 Y40.↓

절대, 증분지령을 이용하여 아래의 도면을 프로그래밍하면 다음과 같습니다.

	절대지령(G90)	증분지령(G91)
	G90 X20. (Y0)↓	G91 X20. (Y0)↓
① → ②	(G90) X80. Y40.↓	(G91) X60. Y40.↓
② → ③	(G90) X100. Y80.↓	(G91) X20. Y40.↓
③ → ④	(G90) X40. (Y80.)↓	(G91) X-60. (Y0)↓
④ → ⑤	(G90) X-20. Y40.↓	(G91) X-60. Y-40.↓
⑤ → ⑥	(G90) X-40. Y0↓	(G91) X-20. Y-40.↓
⑥ → ⑦	(G90) X-60. Y-20.↓	(G91) X-20. Y-20.↓
⑦→8	(G90) X60. Y-40.↓	(G91) X120. Y-20.↓
8 → 9	(G90) X80. Y-20.↓	(G91) X20. Y20.↓

5.2 위치결정G00 (=G000=G0)


G00은 지령된 점까지 급속이송속도(기계에 설정된 최대 속도)로 이동합니다. 주로 공구를 소재근처로 이동시키거나 도피시킬 때 사용합니다.

FORMAT:

X: 이동할 점의 X좌표

Y: 이동할 점의 Y좌표

Z: 이동할 점의 Z좌표

[예] 절대지령 G90 G00 X20. Y110.↓ X140. (Y110.)↓ X165. Y0↓

증분지령 G91 G00 X20. Y20.↓ X120. (Y0)↓ X25. Y-110.↓

5.3 위치결정 G01

공구를 지령된 점까지 지정한 이송속도 F로 직선 이동합니다. F값은 새로 지령할 때까지 유효하므로 매번 지령할 필요는 없습니다.

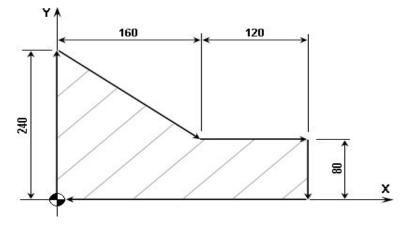
FORMAT:

$$\binom{G90}{G91}G01 X_. Y_. Z_. F_.$$

X: 직선 종점의 X좌표

Y: 직선 종점의 Y좌표

Z: 직선 종점의 Z좌표


F: 이송속도 (Feed: mm/min)

* 이송속도 구하는 방법

F= N×Z×S N: 회전수

Z : 공구날수

S: 이송량(mm/rev)

절대지령	증분지령
G90 G00 X0 Y-10.↓	G90 G00 X0 Y-10.↓
G01 (X0) Y240. F300↓	G91 G01 (X0) Y240. F300↓
X160. Y80.↓	X160. Y- 160.↓
X280. (Y80.)↓	X120. (Y0)↓
(X280.) Y0↓	(X0) Y- 80.↓
X10. (Y0)↓	X- 290. (Y0)↓

5.4 원호보간 G02, G03

지령한 점까지 원호 보간을 합니다.

1) TYPE 1(R지령)

FORMAT: G17 (XY평면일 경우)

G02 : 시계방향의 원호보간

G03: 반시계방향의 원호보간

X: 원호 종점의 X좌표

Y: 원호 종점의 Y좌표

Z: 원호 종점의 Z좌표

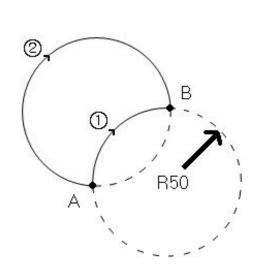
R: 원호반경

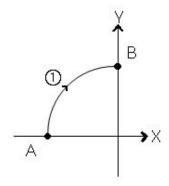
F: 이송속도 (Feed)

2) TYPE 2(I, J, K지령)

FORMAT: G17 (XY평면일 경우)

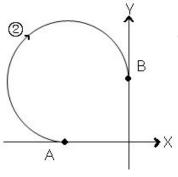
$$\begin{pmatrix} G90 \\ G91 \end{pmatrix}$$
 G02 X_. Y_. I_. J_. F_ \downarrow


Ⅰ: 원호시점에서 원호중심점까지의 X축 거리와 방향


J: 원호시점에서 원호중심점까지의 Y축 거리와 방향

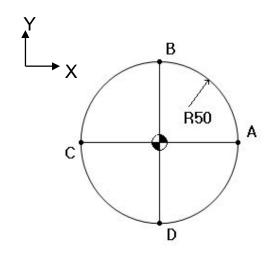
K: 원호시점에서 원호중심점까지의 Z축 거리와 방향

3) 원호의 반경 R로 지령하기


두 점 A와 B를 지나고 반경 R이 50을 만족하는 원은 2개가 발생합니다. 그래서 만약 시계방향으로 가공한다면 180° 이하인 1번과 180° 이상인 2번 두 개의 원이 존재합니다.

①번(180°이하인 원호)를 가공할 경우: +R 절대: G90 G02 X0 Y50. R50. F300

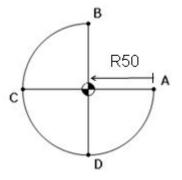
증분 : G91 G02 X50. Y50. R50. F300


②번(180°이상인 원호)를 가공할 경우: -R

절대 : G90 G02 X0 Y50. R-50. F300 증분 : G91 G02 X50. Y50. R-50. F300

4) 원호의 중심까지의 거리I, J, K로 지령하기

모든 각도의 원호를 가공할 수 있고 R지령에 비해 오차가 적습니다. 360° 원호의 경우 R로 가공할 수 없고 I, J, K로만 가능합니다.

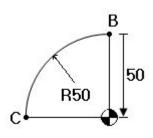


A → B 시계방향 가공

절대: G90 G02 X0 Y50. I-50. J0 F250

증분 : G91 G02 X-50. Y50. I-50. J0 F250

원호시작점 A에서 원호의 중심 까지 거리와 방향

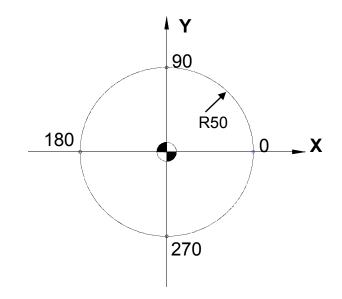


B → C 반시계방향 가공

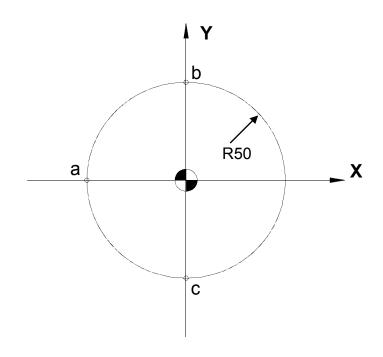
절대: G90 G03 X-50. Y0 I0 J-50. F250

증분: G91 G03 X-50. Y-50. IO J-50. F250

원호시작점 B에서 원호의 중 심까지 거리와 방향



5) R과 IJ와의 상관관계(I,J값 보충설명)


- R로 지령할 경우
- ① 0°이상 180°이하의 원호가공 : R+지령
- ② 180°이상 360°미만의 원호가공: R—지령
- ③ 360° 일주원호 가공 : I,J,K 지령(360°일주원호일 경우 R값은 지령불가)

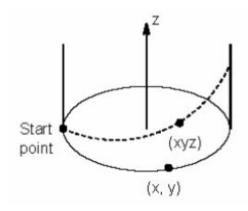
- I,J로 지령 할 경우
- ① 원호시작점이 0°일 때: I<u>-R</u> J <u>0</u>
- ② 원호시작점이 90°일 때 : I <u>0</u> J-R
- ③ 원호시작점이 180°일 때 : I<u>+R</u> J <u>0</u>
- ④ 원호시작점이 270°일 때: I 0 J+R

6) G02,G03 활용 예제 프로그램

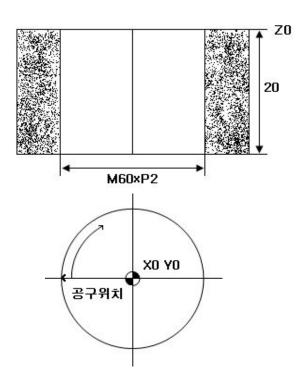
a → b 절대지령 G90G02 X0 Y50. R50. F100↓ =G90G02 X0 Y50. I50. J0 F100↓

b → c 절대지령 G90G02 X0 Y-50. R50. F100↓ =G90G02 X0 Y-50. I0 J-50. F100↓

a → a 절대지령 G90G02 X-50. Y0 I50. J0 F100 ↓ (R지령 불가)


5.5 헬리컬 보간(옵션)

원호 보간 시 평면 이외의 축(최대2축)을 추가해 나선형 원호 보간을 할 수 있습니다.


FORMAT: G17 (XY평면일 경우)

$$egin{pmatrix} G90 \\ G91 \end{pmatrix} G03 \ X_{_}. \ Y_{_}. \ R_{_}. \ (I_{_}. \ J_{_}.)F_{_} \ lpha(eta) \ \downarrow \ \end{pmatrix}$$

α(β) : 원호 보간축 이외 1(2)축 이동지령

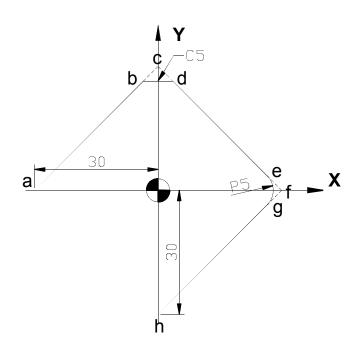
1) 헬리컬 보간 예제

G00 X0 Y0 S500 M03↓ (X0,Y0으로 움직이면서 스핀들 500RPM으로 정회전) Z10.↓ (Z10으로 소재근처로 이동)

G01 Z-19. F300↓ (소재 구멍으로 직선 보간 하면서 이동)

X-30. Y0↓ (소재 벽면으로 이동)

G02 I30. Z-21.↓ (헬리컬 보간: 360° 원호 보간 하면서 Z축으로 -2mm이동)


G00 X0 Y0↓ (도피)

Z100.↓ (도피)

5.6 임의의 면취 코너R(옵션)

임의의 두 직선 사이 면취나 코너 R을 자동으로 만들어 주는 기능으로 두 직선이 만나는 가상의 교점을 좌표로 지령하면서 면취와 코너R값을 알려주면 자동으로 형상을 인식하여 만들어줍니다. 면취는 C, 코너R은 R로 지령하며 어드레스 앞에 ':' 를 붙여 사용합니다. 파라메타 설정에 의해 ':'을 생략할 수 있습니다.

G90G01 X0 Y30.F100 :C5.

X30.Y0 :R5.

X0 Y-30.

X-30.Y0

5.7 휴지 G04

동일블록내의 F또는 P코드로 지령된 시간만큼 공구의 이동을 멈춥니다. 휴지 지령 시 스핀들은 계속 회전합니다.

FORMAT:

G04 F__.↓ G04 P__.↓

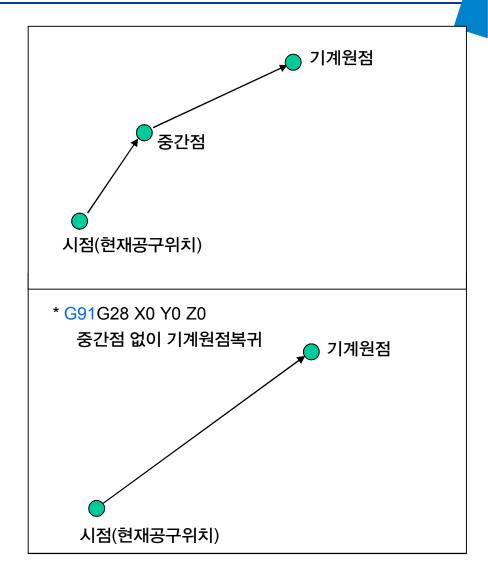
F,P: 휴지시간(SEC)

* 10초간 휴지의 경우

- 1) G04 F10.
- 2) G04 P10.

G04는 원샷G코드이므로 지령한 블록에서만 유효합니다.

5.8 기계원점 자동복귀 G28


지령된 축이 파라메타에 설정된 기계원점으로 자동으로 복귀하는 기능으로 주로 공구교환이나 팔레트 교환에 사용합니다.

FORMAT:

X:중간점(경유점)의 X좌표 Y:중간점(경유점)의 Y좌표 Z:중간점(경유점)의 Z좌표

G28 지령에 적는 좌표는 중간점의 좌표입니다. 중간점이나 원점으로 복귀하는 속도는 급속이송입니다.

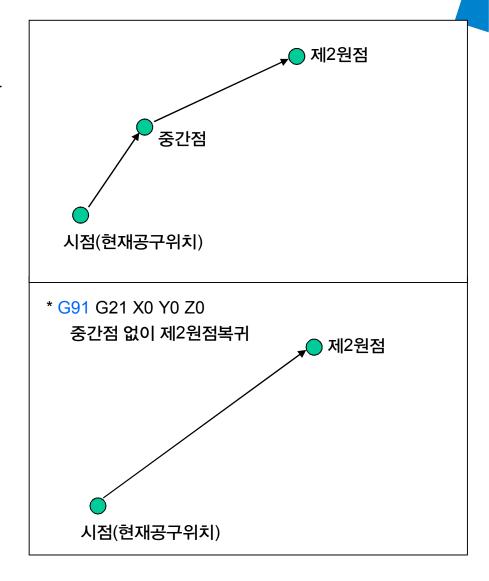
중간점 없이 바로 원점 복귀하고 싶을 때에는 G91 증분으로 바꾸고 이동량을 0으로 지령하면 바로 복귀합니다.

5.9 제2원점 자동복귀 G21

G21지령에 의해 지령된 축이 사용자가 설정한 제2, 제3, 제4원점으로 자동 복귀되는 기능입니다. (제2원점은 공구교환위치가 설정돼 있음)

FORMAT:

X:중간점(경유점)의 X좌표

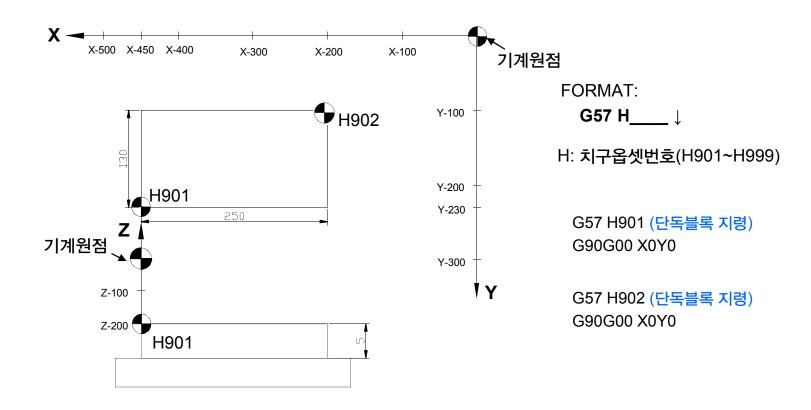

Y:중간점(경유점)의 Y좌표

Z:중간점(경유점)의 Z좌표

(단, 제2원점 위치는 미리 해당 파라메타에 입력시켜 두어야 하고 컨트롤러 시리즈 별로 확인하여야 함)

Vision 380M : No.6081(X),6082(Y),6083(Z)

*제 2원점은 공구교환위치가 설정돼있으므로 수정할 경우 충돌의 위험성이 있으니 제2원점은 수정 불가!!



6.WORK좌표계

6.1 치구옵셋 | G57

프로그래밍하기 쉽도록 사용자가 공작물의 원점을 정할 수 있으며 이때 원점을 프로그램 원점이라 합니다. 프로그램 원점은 미리 NC에 설정해 놓고 프로그램에서는 호출하여 설정합니다.

6.WORK좌표계

6.1 치구옵셋 | G57

Vision일 경우 치구옵셋창에서 값을 셋팅할 수 있습니다.

보정	1.공구보정	2.치구옵셋	3.치구옵셋2	4.계측보정	5.팔레트
	H901	H902	H903	H904	H905
Х	0.0000	0.0000	0.0000	0.0000	0.0000
Y	0.0000	0.0000	0.0000	0.0000	0.0000
Z	0.0000	0.0000	0.0000	0.0000	0.0000
	H906	H907	H908	H909	H910
Х	0.0000	0.0000	0.0000	0.0000	0.0000
Y	0.0000	0.0000	0000 0.0000 0.0000 0.		0.0000
Z	0.0000	0.0000	0.0000	0.0000	0.0000

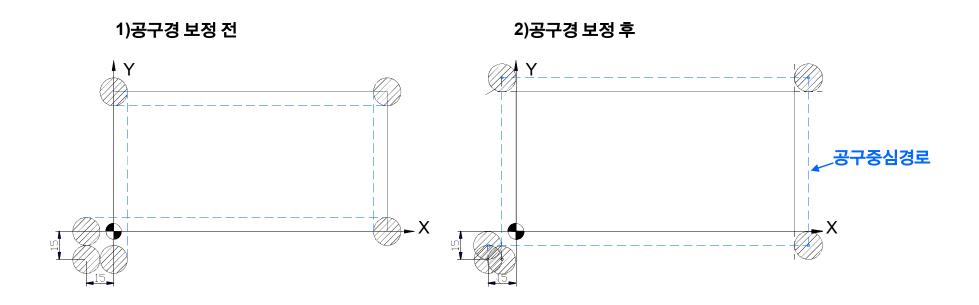
_프로그램에서 는 H번호를 확 인해 호출합니다.

_원점을 만들고자 하는 위치의 기계좌표계 값을 넣어 프로그 램원점을 만든다.

6.WORK좌표계

6.2 치구옵셋 II G54~G56

Vision일 경우 치구옵셋창에서 값을 셋팅할 수 있습니다.


보정		1.공구보정	2.치구	<u>옵</u> 셋	3.치구옵셋2	4	.계측보정	5.팔레	트
					'				
		G54		G55			G56		
	Χ	0.0000	X	0.00	00	X C	0.0000		
	Y	0.0000	Y	0.00	00	ΥC	0.0000		
	Z	0.0000	Z	2 0.00	00	Z	0.0000		

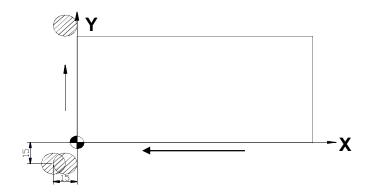
7. 공구경 보정

7.1 공구경 보정 G40~G42

프로그램 작성 시 도면상의 치수로 공구를 이동시킬 경우 공구 중심을 기준으로 움직이기 때문에 공구의 반경치만큼 과절삭이 일어납니다. 이것을 보정하기 위해 반경치만큼 좌표를 수정하여 프로그램을 작성하는 것도 가능하지만 계산에 어려움이 따릅니다. 공구경 보정코드 G41/G42를 사용하면 CNC가 저절로 공구를 반경치만큼 이동시키므로 본래의 형상대로 프로그램을 작성하여 사용할 수 있습니다.

7. 공구경 보정

7.1 공구경 보정 G40~G42


FORMAT:

G40: 공구경 보정 취소 G41: 왼쪽 공구경 보정 G42: 오른쪽 공구경 보정

D : 공구 보정 번호(max 32/64/99/200/400/499/999)

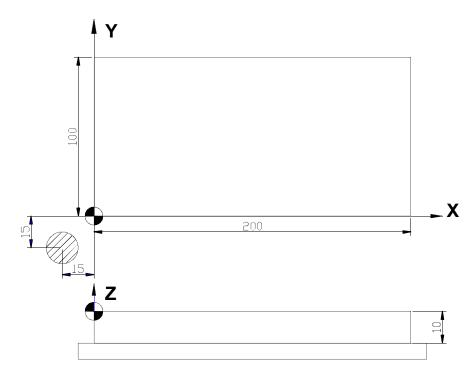
G42: 공구진행방향에서 봤을 때 공구가 소재의 오른쪽에 있을 때

G41: 공구진행방향에서 봤을 때 공구가 소재의 왼쪽에 있을 때

7. 공구경 보정

7.2 공구경 보정

공구경 보정을 하려면 우선 공구옵셋 창에 경 값을 입력해 놓아야 합니다. 보정 값을 입력한 후 D로 공구보정번호를 알려주면 보정번호에 있는 경 값을 읽어 보정합니다.


보정	1.공구보정	2.치구옵셋	3.치구옵션	1 12	4.계측보정	5.팔레트
	_					
H번호	길이보정치	마모량	D번호		직경보정치	마모량
H001	0.0000	0.0000	D001		0.0000	0.0000
H002	0.0000	0.0000	D002		0.0000	0.0000
H003	0.0000	0.0000	D003		0.0000	0.0000
H004	0.0000	0.0000	D004		0.0000	0.0000
H005	0.0000	0.0000	D005		0.0000	0.0000
H006	0.0000	0.0000	D006		0.0000	0.0000
H007	0.0000	0.0000	D007		0.0000	0.0000
H008	0.0000	0.0000	D008		0.0000	0.0000
H009	0.0000	0.0000	D009		0.0000	0.0000
H010	0.0000	0.0000	D010		0.0000	0.0000

*공구경 보정치 직경/반경 설정 가능 설정 파라메타 No.0011 <4>= 0의 경우: 직경 = 1의 경우: 반경

7. 공구경 보정

7.3 공구경 보정 예제 프로그램

※ 주의사항

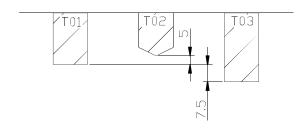
1)G40/G41/G42코드는 G00/G01모드에서만 지령가능 (G02/G03블록에서는 지령불가)

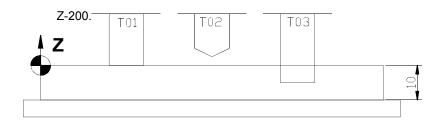
2)G40은 보정축(XY평면일 경우 X나 Y축) 이동 시에 지령하여야 취소됨(380M일 경우)

G40G00X-15.(Y-15.)

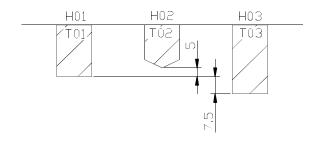
M30↓(프로그램종료)

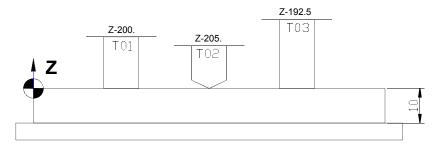
(공구경 보정 취소하면서 X,Y축으로 급속이송)


G00Z200.↓(Z축 방향으로 급속이송으로 도피)



8.1 공구 길이 보정 G43/G44


프로그램 안에 여러 개의 공구를 사용할 경우 공구마다 길이가 달라 공구길이에 맞추어 프로그래밍하면 어려우므로 각 공구길이를 측정하여 옵셋화면에 입력한 후 프로그램상에서 공구 길이보정코드를 이용하여 자동으로 보정하는 기능입니다.


1)공구 길이 보정 전

2)공구 길이 보정 후

8.1 공구 길이 보정 G43/G44

공구 교환 후 최초 Z 좌표 지령 전 또는 Z좌표와 같은 블록에 지령하여 보정하는 것이 좋습니다.

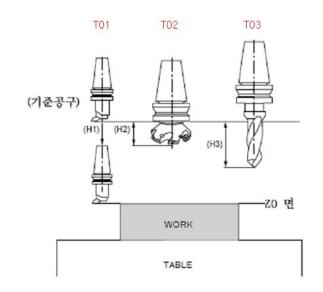
```
공구 길이 보정
FORMAT:
G43 Z__. H__↓
G44↓
```

G43 : +축 공구 길이 보정 G44 : 공구 길이 보정취소

Z : 길이보정 후 이동할 Z좌표

H: 공구 길이 보정번호(max.32/64/99/200/400/499/999)

8.2 공구보정


보정	1.공구보정	2.치구옵셋	3.치구옵셋2	4.계측보정	5.팔레트
	•		1		
H번호	길이보정치	마모량	D번호	직경보정치	마모량
H001	0.0000	0.0000	D001	0.0000	0.0000
H002	0.0000	0.0000	D002	0.0000	0.0000
H003	0.0000	0.0000	D003	0.0000	0.0000
H004	0.0000	0.0000	D004	0.0000	0.0000
H005	0.0000	0.0000	D005	0.0000	0.0000
H006	0.0000	0.0000	D006	0.0000	0.0000
H007	0.0000	0.0000	D007	0.0000	0.0000
H008	0.0000	0.0000	D008	0.0000	0.0000
H009	0.0000	0.0000	D009	0.0000	0.0000
H010	0.0000	0.0000	D010	0.0000	0.0000

8.3 공구길이 보정 방법

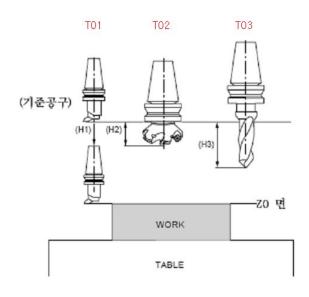
공구길이 보정은 3가지로 구분됩니다.

- 1. 기준공구와의 차이를 입력하는 방법
- 2. 공구길이를 입력하는 방법
- 3. 기계좌표치를 입력하는 방법

위의 방법 중 1번 방법을 이용할 경우 다음과 같습니다.

- 1.기준공구를 선택하여 스핀들에 장착한 후 기계원점에서 수동으로 프로그램 원점에 닿을 때 까지 이동한다.
- 2.이때 기계좌표 Z값을 확인한 후 이 값을 Work좌표계(G54~ G59)의 Z값에 입력한다.

예를 들어 Work좌표계를 G54로 설정할 경우 기준공구로 프로그램원점에 이동시켰을 때 나온 기계좌표치 값을 G54 Z 값에 입력한다. 값이 -400.이라면 Z-400.


01	X	0,0000
(G54)	Υ	0,0000
	Z	-400,0000

3.이 상태에서 기계를 움직이지 않고 상대좌표계 Z를 '0'으로 설정한 후 옵셋화면에 기준공구의 보정번호 01번 길이 값에 보정 값을 '0'으로 입력(기준공구이기 때문에 보정량 값은 0)

4.다음 공구(T02)를 교환한 후 같은 방법으로 공구 날 끝을 프로그램원점으로 이동하여 나온 상대좌표 Z값을 보정번호 2번 길이 값에 입력한다.

5.나머지 공구도 4번과 같은 방법으로 입력한다.

H번호	길이보정치	마모량
H001	0.0000	0.0000
H002	0.0000	0.0000
H003	0.0000	0.0000

* 편의상 공구 번호와 공구 길이보정번호를 같은 번호로 가정함

8.4 공구보정 G58/G59

프로그램상에서 공구 옵셋을 설정, 변경하고자 할 경우 사용합니다.

FORMAT:

$$\begin{pmatrix}
G58 \\
G59
\end{pmatrix} H _ R _ . \begin{pmatrix}
L1 \\
L2
\end{pmatrix} \downarrow$$

$$\begin{pmatrix}
G58 \\
G59
\end{pmatrix} D _ R _ . \begin{pmatrix}
L1 \\
L2
\end{pmatrix} \downarrow$$

G58 : 절대입력 G59 : 증분입력

H : 공구길이 보정번호(H1~H499) D : 공구경 보정번호(D1~D499)

R : 보정량

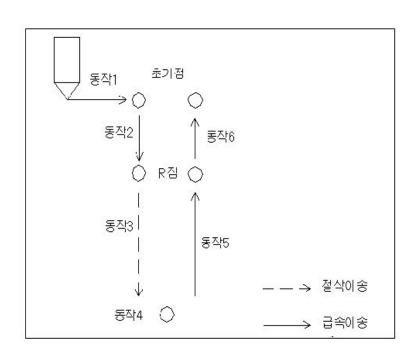
L1: 형상보정, L2: 마모보정

ex) G58 D01 R5. L1

→ 1번 공구경 형상의 옵셋 값을 5.로 설정하라

고정 Cycle G코드는 Drilling 가공 시 자주 사용하는 패턴을 한 블록으로 지령 간단하게 프로그램을 작성할 수 있도록 하는 구멍가공용 사이클로 한 블록으로 지령하기 때문에 메모리를 효율적으로 사용할 수 있습니다.

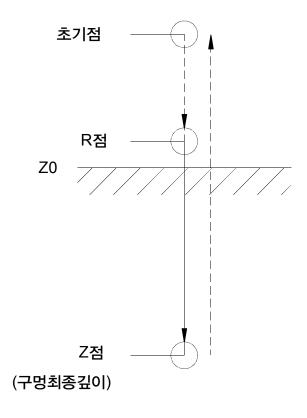
G코드	용도	절입동작	도피동작	구멍 종점에서 동작
G80	고정 사이클 취소			
G81	드릴링 사이클	절삭이송	급속이송	
G82	카운터 보링 사이클	절삭이송	급속이송	휴지(Dwell)
G83	펙 드릴링 사이클	간헐이송	급속이송	
G87	Step, 고속 펙 드릴링 사이클	간헐이송	급속이송	
G77	Step, 펙 드릴링 사이클	간헐이송	급속이송	
G78	가변 펙 드릴링 사이클	간헐이송	급속이송	
G84	태핑 사이클	절삭이송	절삭이송	휴지(Dwell)후 스핀들 역회전
G85	보링(리머) 사이클	절삭이송	절삭이송	
G86	보링 사이클	절삭이송	급속이송	스핀들정지
G88	정밀 보링 사이클	절삭이송	급속이송	스핀들 오리엔테이션
G79	백 보링 사이클	절삭이송	급속이송	스핀들 오리엔테이션
G89	보링 사이클	절삭이송	절삭이송	휴지(Dwell)
G186	다단 보링 사이클	간헐이송	급송이송	

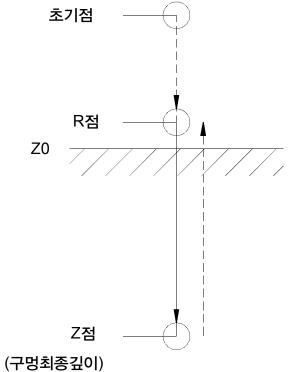

두산인프라코어

고정 사이클의 6개 동작

동작1 : X, Y축의 위치 결정 동작4 : 구멍 밑점에서의 동작

동작2 : R점까지의 급속 이송 동작5 : R점까지 나오는 동작


동작3: 구멍 가공 동작6: 초기 점까지의 급속 이송



고정사이클 기본동작

1) 초기점 복귀(G98)

2) R점 복귀(G99)

점선: 급속이송

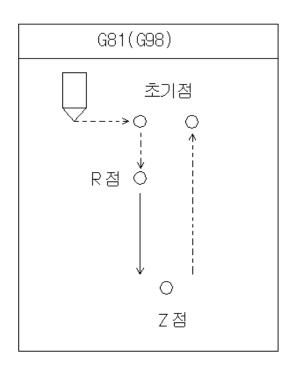
실선: 절삭이송

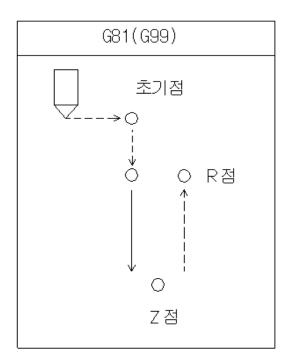
고정사이클의 지령

가공 후 복귀위치

- G98 : 초기점 복귀

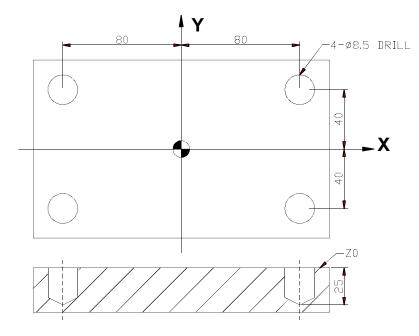
- G99 : R점까지 복귀


고정 사이클 해제 : G80


※고정사이클 공정이 끝나면 반드시 G80으로 해제 시켜야 합니다.

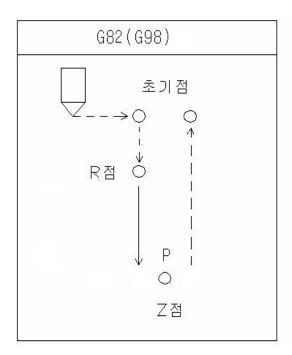
9.1 드릴링 사이클 G81

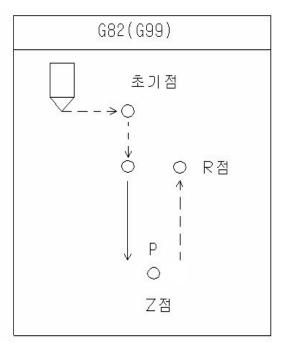
•지령방식 G98(G99) G81 X__. Y__. Z__. R__. F__ L__↓



점선 : 급속이송 실선 : 절삭이송

1) 드릴링 사이클 예제 프로그램

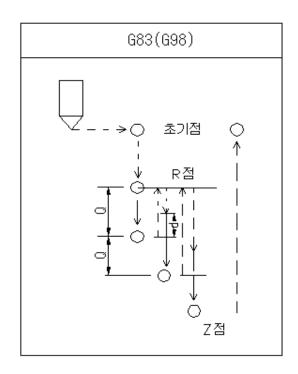


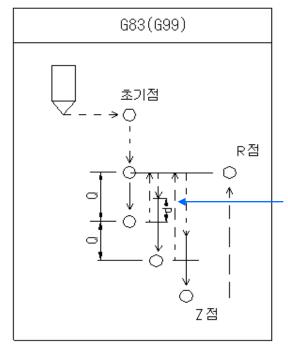

9.2 카운터 보링 사이클 **G82**

• 지령방식

G98(G99) G82 X__. Y__. Z__. R__. P_F_L

P: 휴지시간 (1/1000지령)

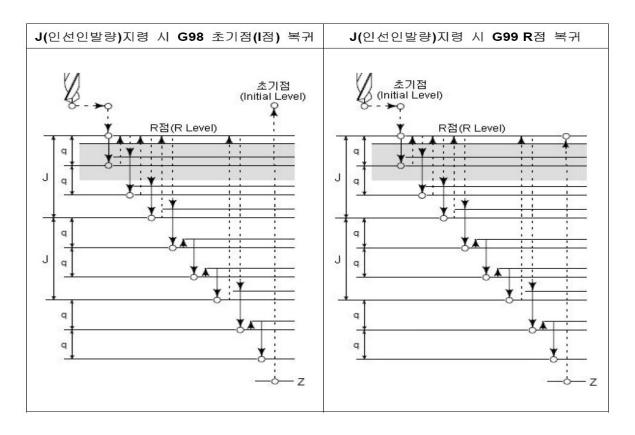




9.3 펙 드릴 사이클 G83

•지령방식 G98(G99) G83 X__. Y__. Z__. R__. Q__. J__. P__ F__ L__↓

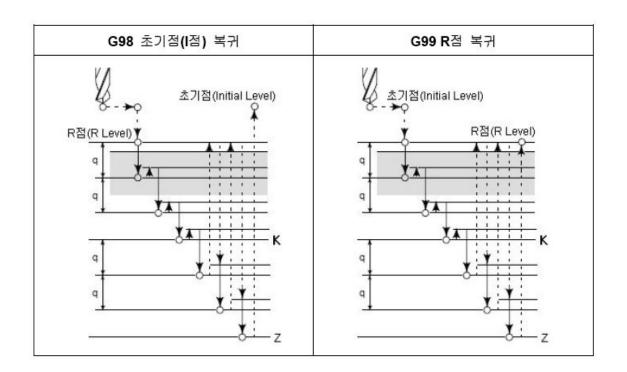
Q : 1회 절입량 J : 인선인발량



도피량d 값은 파라메타 No.503로 설정할 수 있습니다.

9.3 펙 드릴 사이클 G83

* J(인선인발량) 지령 시



9.4 스텝, 펙 드릴링 사이클 G77

• 지령방식

G98(G99) G77 X__. Y__. Z__. R__. Q__. K__. F__ L__ ↓

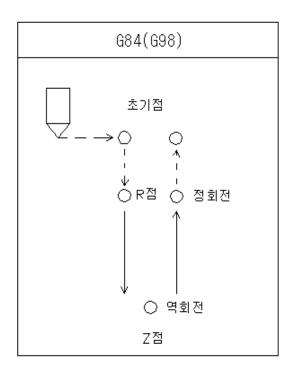
Q : 1회 절입량 K : K점 위치

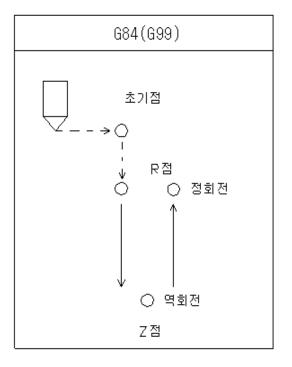
9.5 가변 펙 드릴링 사이클(G78)

• 지령방식

G98(G99) G78 X__. Y__. Z__. R__. Q__. K__. F__ L__ ↓

Q : 1회 절입량


K : 가변량


G99 R 점 복귀
초기점(Initial Level)
RM (R Level)
q-k
q-2k

9.6 태핑 사이클 (G84)

- 지령방식 G98(G99) G84 X__. Y__. Z__. R__. P__ F__ L__↓
- 태핑 사이클 시 이송속도 결정법

F = 회전수(rpm) X 피치

리지드 탭(RIGID TAP)

G84 탭 사이클의 경우 일반 탭과 리지드 모드의 탭을 사용할 수 있습니다. 일반모드에서 탭을 사용할 경우, 스핀들의 회전방 향만 바꿔주는 형태로 작업을 수행하나, 정확한 탭을 내기 위해서는 스핀들의 회전에 동기하는 Z축 이송이 있어야 하며 이러한 작업의 수행은 리지드 모두에서 가능합니다.

리지드 모드에 의한 태핑에서는 태핑 축과 스핀들을 보간시켜 가감속이나 고속에서도 1회전당 나사1리드(Lead)가 정확하게 가공되는 기능입니다.

```
Format
(생략)
G90G00X__Y__
G43Z50.H01M08
G63S__
M843(리지드 탭 모드)
G99G84X__Y__Z__R__F__
X__Y__
X__Y__
G80G00Z__
M845
(이하생략)
```

※주의사항

- 1) 리지드 탭의 경우 F는 나사리드를 지령
- 2) 리지드 탭의 경우 M03(스핀들 정회전)지령 불가
- 3) 역 탭핑의(역회전 절삭 후 정회전 도피)경우 M843 대신 M844로 지령

1) 탭 사이클 예제

■일반 탭(380M, Fanuc 공통)

예)M10×P1.5일 때 G90G00 X100.Y100.S300 M03 G43 Z50.H01 M08 G99G84 Z-20.R3.F450

G80G00 Z200.

*역탭핑(역회전 →정회전) 가공 시

380M: M844 (역 리지드 탭 ON)

■리지드 탭(380M)

예)M10×P1.5일 때

G90G00 X100.Y100.

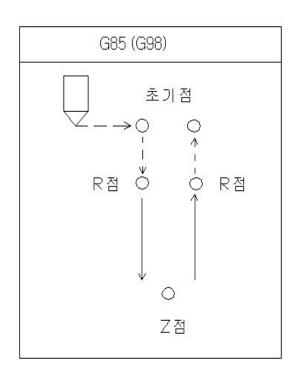
G43 Z50.H01 M08

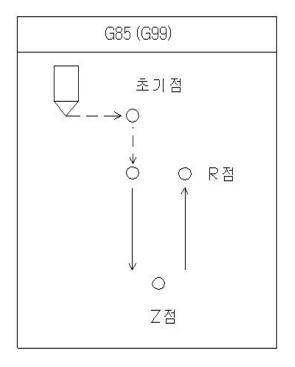
G63 S1000 리지드 탭 범위선택

M843 리지드 탭 모드 ON

G99G84 Z-20.R3.F1.5

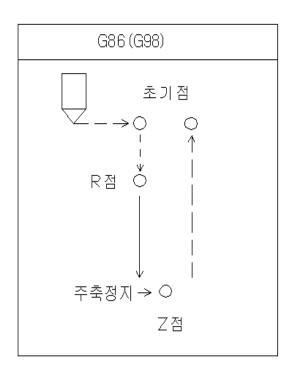
F=피치

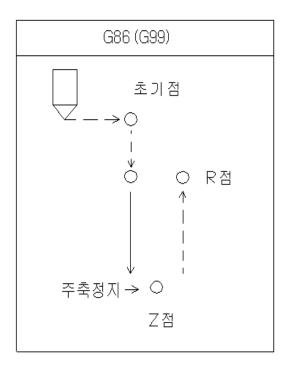

G80G00 Z200.


M845 리지드 탭 모드 OFF

9.7 보링(리머) 사이클 G85

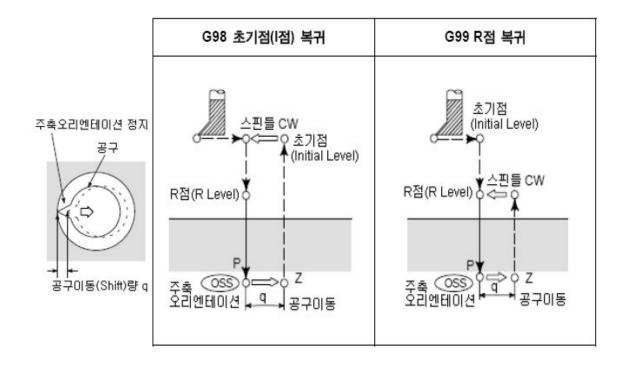
• 지령방식 G98(G99) G85 X__. Y__. Z__. R__. F__ L__↓





9.8 보링 사이클 G86

• 지령방식 G98(G99) G86 X__. Y__. Z__. R__. F__ L__↓


9.9 정밀 보링 사이클 G88

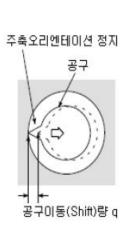
• 지령방식

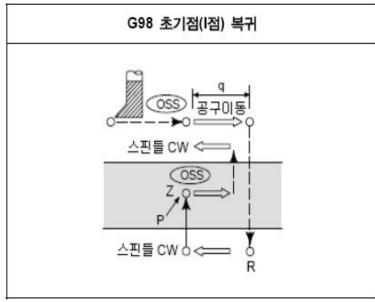
G98(G99) G88 X_.Y_.Z_.R_.I_.J_.Q_.P_F_L__

I,J: 스핀들오리엔테이션 후 X,Y축 공구 이동량

Q: Z종점에서 Z+방향 도피량

- * 정밀보링 작업순서
- ① 초기점에서 R점까지 급속이송
- ② R점에서 구멍최종점(Z점)까지 절삭이송
- ③ Z점에서 휴지 후 Q만큼 Z+방향으로 이동
- ④ 스핀들 오리엔테이션 후 I, J만큼 도피
- ⑤ R점,초기점 복귀 후 Q만큼 복귀 후 스핀들 정회전


9.10 백 보링 사이클 G79


• 지령방식

G98 G79 X_.Y_.Z_.R_.I_.J_.Q_.P_F_L__

I,J: 스핀들오리엔테이션 후 X,Y축 공구 이동량

Q: Z종점에서 Z-방향 도피량

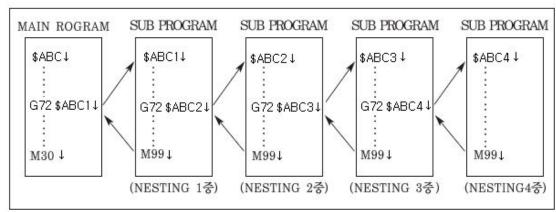
*백보링 작업순서

- ① 초기점에서 스핀들 오리엔테이션 후 I, J만큼 도피
- ② R점까지 급속이송
- ③ I, J만큼 복귀 후 스핀들 정회전
- ④ R점에서 구멍최종점(Z점)까지 절삭이송
- ⑤ Z점에서 휴지 후 Z-방향으로 Q만큼 이동
- ⑥ 스핀들 오리엔테이션 후 Q만큼 도피
- ⑦ 초기점 복귀 후 Q만큼 복귀 후 스핀들 정회전

10. 서브프로그램과 로컬좌표계

10.1 서브프로그램 호출 / 종료 G72 / M99

<의미>


G72 : 서브프로그램 호출 M99 : 서브프로그램 종료

380M, 380i G72 \$(O)____ , L____ ↓
G72 P___ L___ ↓

• 380M / 380i의 경우 프로그램 명이 숫자로만 이루어진 경우 P로 지령가능하며 그 외에는 \$(O)로 프로그램 명을 지령하고 반복횟수(L)와 콤마(,)로 구분합니다.

[예] G72 \$SHAFT-1, L3 ↓ ← 380M 또는 380i 에서 SHAFT-1프로그램을 3번 연속 호출

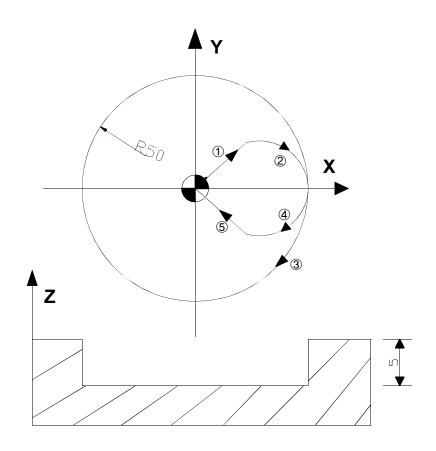
메인프로그램에서 호출된 서브프로그램을 1중 서브프로그램 호출이라고 보면 5중까지 호출할 수 있습니다.

10. 서브프로그램과 로컬좌표계

10.2 로컬좌표계 G93

프로그램을 쉽게 하기 위해 Work좌표계 내에 임시좌표를 만들 수 있고 그 좌표계를 로컬좌표계라 합니다. 로컬좌표계를 설정해도 Work좌표계와 기계좌표계는 바뀌지 않습니다.

FORMAT:


G93 X__. Y**__**. Z**__**. ↓ ←로컬좌표계 설정 **G93 X0 Y0 Z0** ↓ ←로컬좌표계 취소

테이블에 가공물을 여러 개 올려놓고 한꺼번에 가공할 경우나 큰 가공물에서 Work를 여려 개 설정해서 프로그래밍해야 할 경우 사용합니다.

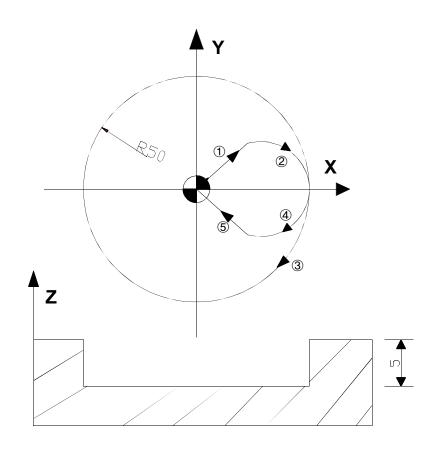
같은 가공물을 동시에 가공할 경우나 큰 가공물에 형상이 반복되면 로컬좌표계와 서브프로그램을 이용하면 편리합니다.

11.1 진원절삭 G12/G13

G12/G22 : 시계방향의 진원절삭(①→②→③→④→⑤) G13/G23 : 반시계방향의 진원절삭(⑤→④→③→②→①)

* G12,G13: ①,⑤ 급속이송 * G22,G23: ①,⑤ 절삭이송

FORMAT

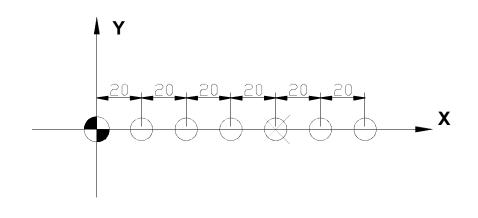

G12 R__. D__ (I__.) F__↓ G13 R__. D__ (I__.) F__↓

R : 원반경

D: 공구경 보정번호(D1~D499)

l : 소재반경 F : 이송속도

1) 진원절삭 프로그램 응용



① 진원절삭 이용 프로그램 G90G00 X0Y0 S__ M03 G43 Z50. H01 M08 G00 Z5. G01 Z-5. F__ G13 R50. D01 F__ G00 Z200.

② 절삭코드를 이용한 진원가공 G90G00 X0Y0 S__ M03 G43 Z50. H01 M08 G00 Z5. G01 Z-5. F__ G41G01 X25.Y-25. D01 G03 X50.Y0 R25. (X50.)(Y0) I-50.(J0) X25.Y25.R25. G40G00 X0Y0 Z200.

11.2 드릴링 패턴 : 라인과 앵글 G111

FORMAT

G111 I__. J__. K__ E__ E__ ...↓

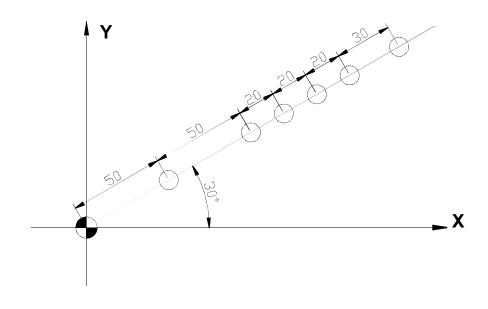
l : 피치(위치간의 간격)

J: 기준점에서 위치결정라인과 X축과의 각도

K : 개수

E : 생략번호

예제풀이)


G90G00 X0 Y0 S__ M03

G43 Z50. H01 M08

G99G81 Z-20.R3.F__

G111 I20.J0 K6 E4

11.3 드릴링 패턴 : 부등간 라인과 앵글 G112

FORMAT

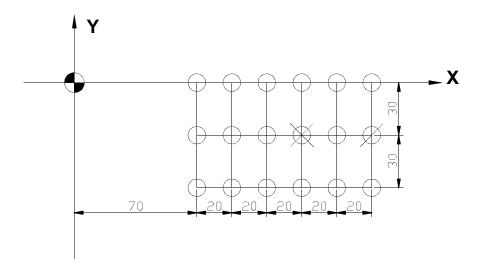
G112 I__. K__ I__. K__ ... J__. ↓

l : 피치(위치간의 간격)

K: 개수(K>0)

J : 기준점에서 위치결정라인과 X축과의 각도

예제풀이)


G90G00 X0 Y0 S__ M03

G43 Z50. H01 M08

G99G81 Z-20.R3.F

G112 I50.K2 I20.K3 I30.K1 J30.

11.4 드릴링 패턴 : 격자 G113/G114

FORMAT

G113 I__. J__. P__ K__ E__ E__...↓

l: 기준점에서 가장 먼 점의 X축 좌표

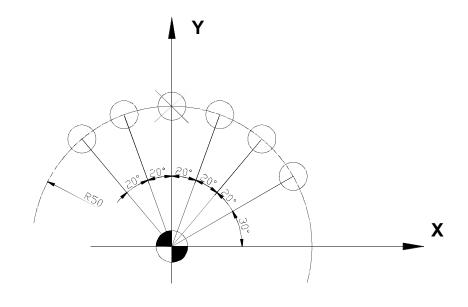
J : 기준점에서 가장 먼 점의 Y축 좌표

P : X축 방향의 개수(P>0)

K: Y축 방향의 개수(K>0)

E : 생략번호

예제풀이)


G90G00 X70.Y0 S__ M03

G43 Z50. H01 M08

G99G81 Z-20.R3.F

G113 I170.J-60.P6 K3 E6 E8

11.5 드릴링 패턴 : 원호 G115

FORMAT

G115 I__. J__. Q__. K__ E__ E__... ↓

1: 원호반경

J: 원호중심에서 첫 번째 위치와 X축과의 각도

Q: 위치간의 각도(CCW:+,CW:-)

K : 개수(K>0)

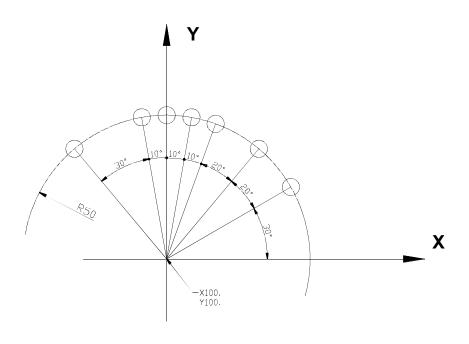
E : 생략번호

예제풀이)

G90G00 X0 Y0 S M03

G43 Z50. H01 M08

G100G99G81 Z-20.R3.F__


G115 I50.J30.Q20.K6 E4

G80G00 Z200.

* G100: 구멍사이클에서 구멍가공 무시

11.6 드릴링 패턴 : 부등간 원호 G116

FORMAT

G116 I__. J__. Q__. K__ Q__. K__... ↓

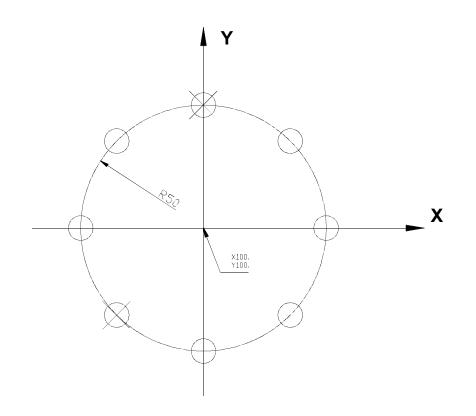
l: 원호반경

J : 원호중심에서 첫 번째 위치와 X축과의 각도

Q: 위치간의 각도(CCW:+,CW:-)

K: 개수(K>0)

예제풀이)


G90G00 X100.Y100. S__ M03

G43 Z50. H01 M08

G100G99G81 Z-20.R3.F__

G116 I50.J30.Q20.K2Q10.K3Q30.K1

11.7 드릴링 패턴 : 서클 G117

FORMAT

G117 I__. J__. K__ E__ E__ ... ↓

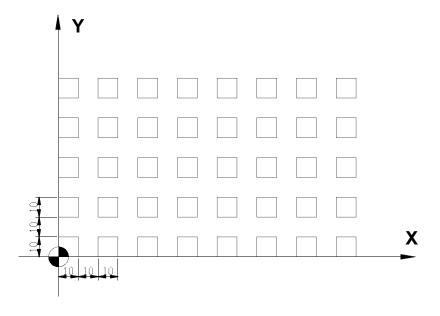
l: 원호반경

J: 원호중심에서 첫 번째 위치와 X축과의 각도

K: 개수 (K+일 경우: CCW방향 위치결정

K-일 경우: CW방향 위치결정)

E : 생략번호


G80G00 Z200.

예제풀이)

G90G00 X100.Y100. S__ M03 G43 Z50. H01 M08 G100G99G81 Z-20.R3.F__ G117 I50.J0 K8 E3 E6

11.8 드릴링 패턴과 프로그램 모달 호출

※주의사항

1)서브프로그램 가공경로는 증분지령 (가공경로는 절대지령 사용불가)

2) 공구경 보정을 사용할 수 없음

G74: 서브프로그램 모달 호출 | (위치결정 후 프로그램 모달 호출)
G75: 서브프로그램 모달 호출 || (현 위치에서 프로그램 호출 후 위치 결정 점에서 모달 호출)

\$MAIN

G72 \$SUB

G113 I140.J80.P8 K5

M30

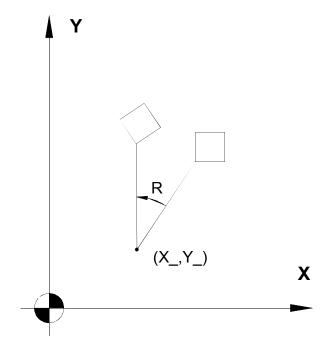
\$SUB

G90G01 Z-5. F__

G91 X10.

Y10.

X-10.


Y-10.

G90G00 Z3.

M99

11.9 회전복사 G721/G72.1

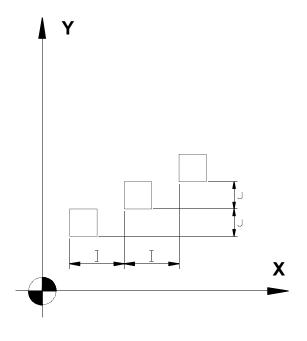
FORMAT

G721 \$__, L__ X__. Y__. R__. ↓

\$: 서브프로그램 명

L : 반복횟수

X,Y: 회전중심좌표


R : 회전각도(CCW: +, CW: -)

※주의사항

1)서브프로그램 가공경로는 절대지령

2)공구경 보정 사용 가능

11.10 평행복사 G722/G72.2

FORMAT **G722** \$__, **L**__ **I**__. **J**__. ↓

\$: 서브프로그램 명

L : 반복횟수

l : X축 방향 SHIFT량(이동량) J : Y축 방향 SHIFT량(이동량)

